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Occam factors and model independent Bayesian learning of continuous distributions
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Learning of a smooth but nonparametric probability density can be regularized using methods of quantum
field theory. We implement a field theoretic prior numerically, test its efficacy, and show that the data and the
phase space factors arising from the integration over the model space determine the free parameter of the
theory~‘‘smoothness scale’’! self-consistently. This persists even for distributions that are atypical in the prior
and is a step towards a model independent theory for learning continuous distributions. Finally, we point out
that a wrong parametrization of a model family may sometimes be advantageous for small data sets.
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I. INTRODUCTION

One of the central problems in learning is to balan
‘‘goodness of fit’’ criteria against the complexity of model
An important development in the Bayesian approach w
thus the realization that there does not need to be any e
penalty for model complexity. If we compute the total pro
ability that data are generated by a model, there is a fa
from the volume in parameter space—the ‘‘Occam factor’’
that discriminates against models with more parameters@1,2#
or, more specifically, against models that are more comp
in a precise information theoretic sense@3#. This works re-
markably well for systems with a finite number of param
eters and creates a complexity ‘‘razor’’~after ‘‘Occam’s ra-
zor’’ ! that is almost equivalent to the celebrated minim
description length~MDL ! principle @4#. In addition, if thea
priori distributions involved are strictly Gaussian, the ide
have also been proven to apply to some infinite-dimensio
~nonparametric! problems@6#. It is not clear, however, wha
happens if we leave the finite-dimensional setting to cons
nonparametric problems that are not Gaussian, such as
estimation of a smooth probability density. A possible rou
to progress on the nonparametric problem was opened
noticing @5# that a Bayesian prior for density estimation
equivalent to a quantum field theory~QFT!. In particular,
there are field theoretic methods for computing the infin
dimensional analog of the Occam factor, at least asymp
cally for large numbers of examples. These observati
have led to a number of papers@7–10# exploring alternative
formulations and their implications for the speed of learnin
Here we return to the original formulation of Ref.@5# and
address some of the questions left open by the previous w
@11#. What is the result of balancing the infinite-dimension
Occam factor against the goodness of fit? Is the QFT in
ence optimal in using all of the information relevant f
learning @3#? What happens if our learning problem
strongly atypical of the prior distribution?

The conclusions we finally make were not expected by
at the start of the project, and they will probably be n
intuitively obvious to most of our readers either. Thus w
chose to present this work in the same way it had origina
proceeded. First, we develop a numerical scheme for im
mentation of the learning algorithm of Ref.@5#. Then we
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show some results of Monte Carlo simulations with this
gorithm and notice some peculiar features that have not b
predicted by the previous literature. Concurrently with t
simulations, we present a simple analytical argument t
explains these unexpected but extremely desirable featu

II. PRELIMINARIES

Following Ref. @5#, if N independent, identically distrib
uted samples$xi%,i 51, . . . ,N, are observed, then the prob
ability that a particular densityQ(x) gave rise to these dat
is given by

P@Q~x!u$xi%#5

P@Q~x!#)
i 51

N

Q~xi !

E @dQ~x!#P@Q~x!#)
i 51

N

Q~xi !

, ~1!

where P@Q(x)# encodes oura priori expectations ofQ.
Specifying this prior on a space of functions defines a Q
and the optimal least square estimator is then thea posteriori
Bayesian average

Qest~xu$xi%!5
^Q~x!Q~x1!Q~x2!•••Q~xN!& (0)

^Q~x1!Q~x2!•••Q~xN!& (0)
, ~2!

where ^•••& (0) means averaging with respect to the prio
SinceQ(x)>0, it is convenient to define an unconstrain
field f(x), Q(x)[(1/l 0)exp@2f(x)#, where the choice of
the dimension setting constantl 0 must not influence any
final results. Other definitions are also possible@7#, but we
think that most of our results do not depend on this choi

Next we should select a prior that regularizes the infin
number of degrees of freedom and allows learning. We w
the priorP@f# to make sense as a continuous theory, in
pendent of discretization ofx on small scales. Since it is no
clear what a renormalization procedure for a probability d
sity would mean, we also require that when we estimate
distribution Q(x) the answer must be everywhere finit
These conditions imply that our field theory must be ult
violet ~UV! convergent. Forx in one dimension, a minima
choice is
©2002 The American Physical Society37-1
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P@f~x!#5

expF2
l 2h21

2 E dxS ]hf

]xh D 2G
Z

3dF E dx e2f(x)

l 0
21G , ~3!

where h.1/2, Z is the normalization constant, and thed
function enforces normalization ofQ. We refer tol andh as
the smoothness scaleand theexponent, respectively. They
would be calledhyperparametersin other machine learning
literature@6#.

In @5# this theory was solved for largeN andh51 using
the familiar WKB techniques. The saddle point~or the clas-
sical solution! for the f averaging in^) i 51

N Q(xi)&
(0) was

found to be given by

l ]x
2fcl~x!1

N

l 0
e2fcl(x)5(

j 51

N

d~x2xj !, ~4!

and the fluctuation determinant around this saddle is

R5expF2
1

2
A N

l l 0
E dx e2fcl(x)/2G . ~5!

Then the correlation functions take a familiar form

K )
i 51

N

Q~xi !L (0)

'
1

l 0
N

exp„2Seff @fcl~x!;$xi%#…, ~6!

Seff5
l

2E dx~]xfcl!
21(

j 51

N

fcl~xj !2 ln R, ~7!

In Ref. @5# it was shown that, with such correlation fun
tions, Eq.~2! is a ‘‘proper’’ solution to the learning problem
It is nonsingular even at finiteN, it converges to the targe
distribution P(x) that actually generates the data, and
variance of fluctuations around the target,c(x)[
2 lnQest(x)2@2 lnl 0P(x)#, falls off rather quickly as
;1/Al NP(x). It was also noted that the effective actio
@Eq. ~7!# has acquired a term2 ln R, which grows asl de-
creases. This is contrary to the data contributi
( j 51

N fcl(xj ), which favors smalll and the corresponding
overfitting. Thus the2 lnR term may be rightfully called an
infinite-dimensional generalization of the Occam facto
The authors speculated that, if the actuall is unknown, one
may average over it and hope that, much as in Baye
model selection@1,2#, the competition between the data a
the fluctuations will select the optimal smoothness scalel * .
Finally, they suggested that this optimal scale might beh
as l * ;N1/3.

Before we proceed to the numerical implementation of
above algorithm, a note is in order. At first glance the the
we study seems to look almost exactly similar to a Gauss
process@6#. This impression is produced by a Gaussian fo
of the smoothness penalty in Eq.~3!, and by the fluctuation
02613
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determinant that plays against the goodness of fit in
smoothness scale~model! selection. However, both similari
ties are incomplete. The Gaussian penalty in the prior
amended by the normalization constraint, which gives rise
the exponential term in Eq.~4!, and violates many familiar
results that hold for Gaussian processes, the representer
rem @12# being just one of them. In the semiclassical limit
largeN, Gaussianity is restored approximately, but the cl
sical solution is extremely nontrivial, and the fluctuation d
terminant is only the leading term of the Occam’s razor, n
the complete razor as it is for a Gaussian process. In a
tion, it depends on the data only through the classical so
tion; this is remarkably different from the usual determina
arising in the Gaussian processes literature@6,7#.

III. THE ALGORITHM

Numerical implementation of the theory is rather simp
First, to eliminate a possible infrared singularity in Eq.~5!
@3,11#, we confinex to a box 0<x<L with periodic bound-
ary conditions. The boundary value problem, Eq.~4!, is then
solved by a standard ‘‘relaxation’’~or Newton! method of
iterative improvements to a guessed solution@13# ~for the
target precision we always use 1025). The independent vari-
ablexP@0,1# is discretized in equal steps (104 for Figs. 1–4,
and 105 for Figs. 5 and 6!. We use an equally spaced grid
ensure stability of the method, while small step sizes
needed since the scale for variation offcl(x) is @5#

dx;Al /NP~x!, ~8!

which can be rather small for largeN or small l .
Since the theory is UV convergent, we can generate r

dom probability densities chosen from the prior Eq.~3! by
replacingf with its Fourier series and truncating the latter
some sufficiently high wave numberkc (kc51000 for Figs.
1–4, and 5000 for Figs. 5 and 6!. Then Eq.~3! enforces the
amplitude of thekth mode (k.0) to be distributeda priori
normally around zero with the standard deviation

sk5
21/2

l h21/2S L

2pkD h

. ~9!

FIG. 1. Qcl found for differentN at l 50.2.
7-2
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Once all these amplitudes are selected, thek50 harmonic is
then set by the normalization condition.

Coded in such a way, the simulations are extremely co
putationally intensive because each iteration steps invo
an inversion of a large matrix. Therefore, Monte Carlo av
agings given here are only over 500 runs, fluctuation de
minants are calculated according to Eq.~7!, not using nu-
merical path integration, andQcl5(1/l 0)exp@2fcl# is
always used as an approximation toQest.

IV. SIMULATIONS: CORRECT PRIOR

As an example of the algorithm’s performance, Fig.
shows one particular learning run forh51 andl 50.2. We
see that singularities and overfitting are absent even forN as
low as ten. Moreover, the approach ofQcl(x) to the actual
distribution P(x) is remarkably fast: forN510, they are
similar; for N51000, very close; forN5100 000, one need
to look carefully to see the difference between the two.

To quantify this similarity of distributions, we comput

FIG. 2. L as a function ofN and l . The best fits are: forl
50.4, L5(0.5460.07)N20.48360.014; for l 50.2, L5(0.83
60.08)N20.49360.09; for l 50.05, L5(1.6460.16)N20.50760.09.

FIG. 3. L as a function ofN and l a . Best fits are: forl a

50.4, L5(0.5660.08)N20.47760.015; for l a50.05, L5(1.90
60.16)N20.50260.008. Learning is always withl 50.2.
02613
-
es
-
r-

the Kullback-Leibler~KL ! divergenceDKL(PuuQest) between
the true distributionP(x) and its estimateQest(x), and then
average over the realizations of the data points and the
distribution. As discussed in@3#, this learning curveL(N)
measures the~average! excess cost incurred in coding th
N11th data point because of the finiteness of the d
sample, and thus can be called the ‘‘universal learn
curve.’’ If the inference algorithm uses all of the informatio
contained in the data that is relevant for learning~‘‘predictive
information’’ @3#!, then@3,5,10,11#

L~N!;~L/l !1/2hN1/2h21. ~10!

We test this prediction against the learning curves in
actual simulations. Forh51 andl 50.4, 0.2, 0.05, these ar
shown in Fig. 2. One sees that the exponents are extrem
close to the expected one-half, and the ratios of the pre
tors are within the errors from the predicted scaling;1/Al .
All of this means that the proposed algorithm for findin

FIG. 4. L as a function ofN, ha , and l a . Best fits: forha

52, l a50.1, L5(0.4060.05)N20.49360.013; for ha50.8, l a

50.1, L5(1.0660.08)N20.35560.008, l 50.2 for all graphs, but the
one withha50, for which l 50.1.

FIG. 5. Smoothness scale selection by the data. The lines tha
off the axis for smallN symbolize thatSeff monotonically decrease
as l →`.
7-3
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ILYA NEMENMAN AND WILLIAM BIALEK PHYSICAL REVIEW E 65 026137
densities not only works, but is at most a constant fac
away from being optimal in using the predictive informatio
of the sample set.

V. SIMULATIONS: WRONG PRIOR

Next we investigate how one’s choice of the prior infl
ences learning. We first stress that there is no such thing
wrong prior. If one admits a possibility of it being wrong
then it does not encode all of thea priori knowledge. It does
make sense, however, to ask what happens if the distribu
we are trying to learn is an extreme outlier in the priorP@f#.
One way to generate such an example is to choose a ty
function from a different priorP8@f#, and this is what we
mean by ‘‘learning with a wrong prior.’’

If the prior is wrong in this sense, and learning is d
scribed by Eqs.~2!–~4!, then we still expect the asymptoti
behavior, Eq.~10!, to hold; only the prefactors ofL should
change, and those must increase since there is an obv
advantage in having the right prior; we illustrate this in Fig
3 and 4.

For Fig. 3, bothP8@f# andP@f# are given by Eq.~3!, but
P8 has the ‘‘actual’’ smoothness scalel a50.4, 0.05, and for
P the ‘‘learning’’ smoothness scale isl 50.2 ~we show the
casel a5l 50.2 again as a reference!. TheL;1/AN behav-
ior is seen unmistakably. The prefactors are a bit larger~un-
fortunately, insignificantly! than the corresponding ones fro
Fig. 2, so we may expect that the ‘‘right’’l , indeed, provides
better learning~see later for a detailed discussion!.

Further, Fig. 4 illustrates learning when not onlyl, but
alsoh is ‘‘wrong’’ in the sense defined above. We illustra
this for ha52, 0.8, 0.6, 0~remember that onlyha.0.5 re-
moves UV divergences!. Again, the inverse square root d
cay of L should be observed, and this is evident forha52.
The ha50.8,0.6,0 cases are different. Even forN as high as
105 the estimate of the distribution is far from the target, th
the asymptotic regime is not reached. This is a crucial ob
vation for our subsequent analysis of the smoothness s
determination from the data. Remarkably,L ~both averaged
and in the single runs shown! is monotonic, so even in the
cases ofqualitatively less smooth distributionsthere still is

FIG. 6. Comparison of learning speed for the same data
with different a priori assumptions.
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no overfitting. On the other hand,L is well above the asymp
tote for h52 and smallN, which means that initially too
many details are expected and wrongfully introduced into
estimate, but then they are almost immediately (N;300)
eliminated by the data.

VI. SMOOTHNESS SCALE SELECTION

Following the argument suggested in@5#, we now view
P@f#, Eq. ~3!, as being a part of some wider model th
involves a prior overl . The details of the prior are irrel
evant, however, ifSeff(l ), Eq. ~7!, has a minimum that
steepens asN grows. We explicitly note that this mechanis
is not a tuning of the prior’s parameters, but Bayesian inf
ence at work:l * emerges in a competition between the k
netic, the data, and the Occam terms to makeSeff smaller,
and thus thetotal probability of the data is larger. In its turn
larger probability means, roughly speaking, a shorter to
code length, hence, the relation to the MDL paradigm@4#.

The data term, on average, is equal toNDKL(PuuQcl), and,
for very regularP(x) ~an implicit assumption in@5#!, it is
small. Thus only the kinetic and the Occam terms matter,
l * ;N1/3 @5#. For less regular distributionsP(x), this is not
true@cf. Fig. ~4!#. Forh51, Qcl(x) approximates large-scal
features ofP(x) very well, but details at scales smaller tha
;Al /NL are averaged out. IfP(x) is taken from the prior,
Eq. ~3!, with someha , then these details fall off with the
wave number k as ;k2ha. Thus the data term is
;N1.52hal ha20.5 and is not necessarily small. Forha,1.5
this dominates the kinetic term and competes with the fl
tuations to set

l * ;N(ha21)/ha, ha,1.5. ~11!

There are two remarkable things about Eq.~11!. First, for
ha51, l * stabilizes at some constant value, which we e
pect to be equal tol a . Second, even forhÞha , Eqs.~10!
and ~11! ensure thatL scales as;N1/2ha21, which is at
worst a constant factor away from the best scaling, Eq.~10!,
achievable with the ‘‘right’’ prior,h5ha . So, by allowing
l * to vary with N we can correctly capture the structure
models that are qualitatively different from our expectatio
(hÞha) and produce estimates ofQ that are extremely ro-
bust to the choice of the prior. To our knowledge, this feat
has not been noted before in a reference to a nonparam
problem.

We present simulations relevant to these predictions
Figs. 5 and 6. Unlike in the previous figures, the results
not averaged due to extreme computational costs, so all
further claims have to be taken cautiously. On the other ha
selectingl * in single runs has some practical advantag
we are able to ensure the best possible learning for any r
ization of the data. Figure 5 shows single learning runs
variousha and l a . In addition, to keep the figure readabl
we do not show runs withha50.6,0.7,1.2,1.5,3, andha
→`, which is a finitely parameterizable distribution. All o
these display a good agreement with the predicted scali
Eq. ~11! for ha,1.5, andl * ;N1/3 otherwise. Next we cal-
culate the KL divergence between the target and the estim

ts
7-4
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at l 5l * . The average of this divergence over the samp
and the prior is the learning curve@cf. Eq. ~10!#. For ha
50.8,2 we plot the divergences in Fig. 6 side by side w
their fixed l 50.2 analogues. Again, the predictions clea
are fulfilled. Note, that forhaÞh there is aqualitative ad-
vantage in using the data induced smoothness scale.

VII. PARAMETRIZATION AS A WRONG PRIOR

The last four figures have illustrated some aspects
learning with ‘‘wrong’’ priors. However, all of our results
may be considered as belonging to the ‘‘wrong prior’’ cla
Indeed, the actual probability distributions we used were
nonparametric continuous functions with smoothness c
straints, but were composed ofkc Fourier modes, thus ha
2kc parameters. For finite parameterization, asymptotic pr
erties of learning usually do not depend on the priors~cf.
@3,4#!, and priorless theories can be considered@14#. In such
theories it would take well over 2kc samples to even start t
close down on the actual value of the parameters, and y
lot more to get accurate results. However, using the wr
continuous parameterization@f(x)# we were able to obtain
good fits for as low as 1000 samples~cf. Fig. 1! with the help
of the prior Eq.~3!. Moreover, learning happened contin
ously and monotonically without huge chaotic jumps
overfitting that necessarily accompany any brute force
rameter estimation method at lowN. So, for some cases,
seemingly more complex modelis actuallyeasierto learn.

Thus our claim: when data are scarce and the parame
are abundant, one gains even by using the regularizing p
ers of wrong priors. The priors select some large scale
tures that are the most important to learn first and fill in
details as more data become available~see@3# on relation of
this to the Structural Risk Minimization theory!. If the global
features are dominant~arguably, this is generic!, one actually
wins in the learning speed~cf. Figs. 2, 3, and 6!. If, however,
small scale details are as important, then one at least is g
anteed to avoid overfitting~cf. Fig. 4!.

One can summarize this in an Occam-like fashion@3#. If
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two models provide equally good fits to data,a simpler one
should always be used. In particular, the predictive informa
tion, which quantifies complexity@3#, and of whichL is the
derivative, in a QFT model is;N1/2h, and it is;kclnN in
the parametric case. So, forkc.N1/2h, one should prefer a
‘‘wrong’’ QFT formulation to the correct one. These resul
are very much in the spirit of our whole program. Not only
the value ofl * selected that simplifies the description of th
data, but the continuous parameterization itself serves
same purpose.

VIII. SUMMARY

The field theoretic approach to density estimation not o
regularizes the learning process but also allows the s
consistent selection of smoothness criteria through
infinite-dimensional version of the Occam factors. We ha
shown numerically, and then explained analytically that t
works, even more clearly than was conjectured. Forha
,1.5, L truly becomes a property of the data, and not of t
Bayesian prior. If we can extend these results to otherha and
combine this work with the reparametrization invariant fo
mulation of @8,9#, this should give a complete theory o
Bayesian learning for one dimensional distributions, and t
theory has no arbitrary parameters. In addition, if this the
properly treats the limitha→`, we should be able to se
how the well-studied finite-dimensional Occam factors a
the MDL principle arise from a more general nonparame
formulation.
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