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Occam factors and model independent Bayesian learning of continuous distributions
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Learning of a smooth but nonparametric probability density can be regularized using methods of quantum
field theory. We implement a field theoretic prior numerically, test its efficacy, and show that the data and the
phase space factors arising from the integration over the model space determine the free parameter of the
theory (“smoothness scalg’self-consistently. This persists even for distributions that are atypical in the prior
and is a step towards a model independent theory for learning continuous distributions. Finally, we point out
that a wrong parametrization of a model family may sometimes be advantageous for small data sets.
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[. INTRODUCTION show some results of Monte Carlo simulations with this al-
gorithm and notice some peculiar features that have not been
One of the central problems in learning is to balancepredicted by the previous literature. Concurrently with the
“goodness of fit” criteria against the complexity of models. simulations, we present a simple analytical argument that
An important development in the Bayesian approach wag&xplains these unexpected but extremely desirable features.
thus the realization that there does not need to be any extra
penalty for model complexity. If we compute the total prob- Il. PRELIMINARIES
ability that data are generated by a model, there is a factor
from the volume in parameter space—the “Occam factor”—
that discriminates against models with more param¢fiess
or, more specifically, against models that are more comple

Following Ref.[5], if N independent, identically distrib-
uted sample$x;},i=1,... N, are observed, then the prob-
Qbility that a particular densit)(x) gave rise to these data

in a precise information theoretic sensd. This works re- IS given by
markably well for systems with a finite humber of param- N
eters and creates a complexity “razof@fter “Occam’s ra- P[Q(X)]H Q(x)
zor”) that is almost equivalent to the celebrated minimal i=1
description lengt{MDL) principle [4]. In addition, if thea PLQ(X)[{xi}]= N . (@
priori distributions involved are strictly Gaussian, the ideas f [dQ(x)]P[Q(x)]H Q(x;)
i=1

have also been proven to apply to some infinite-dimensional

(nonparametricproblems[6]. It is not clear, however, what o ,
happens if we leave the finite-dimensional setting to considefneré PLQ(x)] encodes oura priori expectations ofQ.

nonparametric problems that are not Gaussian, such as tiP€Cifying this prior on a space of functions defines a QFT,
estimation of a smooth probability density. A possible route?Nd the optimal least square estimator is theratpesteriori
to progress on the nonparametric problem was opened byayesian average
noticing [5] that a Bayesian prior for density estimation is 0
equivalent to a quantum field theof@QFT). In particular, Qes(X|{X )= (QEIQMX1)Q(X) - -- Q) 2)
there are field theoretic methods for computing the infinite- (Q(X1)Q(X) - - -Q(xN)>(°)
dimensional analog of the Occam factor, at least asymptoti-
cally for large numbers of examples. These observationwhere (- - Y means averaging with respect to the prior.
have led to a number of papdia-10] exploring alternative  Since Q(x)=0, it is convenient to define an unconstrained
formulations and their implications for the speed of learning.field ¢(x), Q(x)=(1//o)exd —¢(x)], where the choice of
Here we return to the original formulation of R¢6] and  the dimension setting constarf, must not influence any
address some of the questions left open by the previous woifinal results. Other definitions are also possipi¢, but we
[11]. What is the result of balancing the infinite-dimensionalthink that most of our results do not depend on this choice.
Occam factor against the goodness of fit? Is the QFT infer- Next we should select a prior that regularizes the infinite
ence optimal in using all of the information relevant for number of degrees of freedom and allows learning. We want
learning [3]? What happens if our learning problem is the priorP[ ¢] to make sense as a continuous theory, inde-
strongly atypical of the prior distribution? pendent of discretization of on small scales. Since it is not
The conclusions we finally make were not expected by uslear what a renormalization procedure for a probability den-
at the start of the project, and they will probably be notsity would mean, we also require that when we estimate the
intuitively obvious to most of our readers either. Thus wedistribution Q(x) the answer must be everywhere finite.
chose to present this work in the same way it had originallyThese conditions imply that our field theory must be ultra-
proceeded. First, we develop a numerical scheme for impleviolet (UV) convergent. Fok in one dimension, a minimal
mentation of the learning algorithm of Rdf]. Then we  choice is
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where »>1/2, Z is the normalization constant, and tlée
function enforces normalization 6J. We refer to/” and » as
the smoothness scaland theexponent respectively. They

X . ) 0.54
would be callechyperparametersn other machine learning
literature[6]. 0 . . . .
In [5] this theory was solved for largd and »=1 using 0 0.2 0.4 0.6 0.8 1

X

the familiar WKB techniques. The saddle poiot the clas- FIG. 1. Q found for differentN at /=0.2.

sical solution for the ¢ averaging in(II\"_;Q(x;))® was

found to be given by determinant that plays against the goodness of fit in the

N N smoothness scal@enode) selection. However, both similari-
/92 |(x)+—/e*‘f’c'(X):E S(X—X), (4) ties are incomplete. The C_;aussian p.enalty. in the pr!or is
x #c / - J
/0 j=1 amended by the normalization constraint, which gives rise to

] ) ) ] the exponential term in Eq4), and violates many familiar
and the fluctuation determinant around this saddle is results that hold for Gaussian processes, the representer theo-
rem[12] being just one of them. In the semiclassical limit of
_ _ l N — hoi(¥)12 large N, Gaussianity is restored approximately, but the clas-
R=ex — | dx e % . (5) . o I .
2 N /7, sical solution is extremely nontrivial, and the fluctuation de-
] ) N terminant is only the leading term of the Occam’s razor, not
Then the correlation functions take a familiar form the complete razor as it is for a Gaussian process. In addi-
N ) tion, it depends on the data only through the classical solu-
1 ) tion; this is remarkably different from the usual determinants
iﬂl Qb)) ~ ﬁexd_seﬁ[%(x)’{xi}])’ © arising in the Gaussian processes literafér@].

Ill. THE ALGORITHM

/ N
== 24 N—InR 7
Sef ZJ X(Jxba) 121 Palx)~InR, @ Numerical implementation of the theory is rather simple.

First, to eliminate a possible infrared singularity in E)

In Ref.[5] it was shown that, with such correlation func- [3,11], we confinex to a box 0<x<L with periodic bound-
tions, Eq.(2) is a “proper” solution to the learning problem. ary conditions. The boundary value problem, &, is then
It is nonsingular even at finitd|, it converges to the target solved by a standard “relaxationfor Newton method of
distribution P(x) that actually generates the data, and theiterative improvements to a guessed solutjds] (for the
variance of fluctuations around the target)(x)= target precision we always use 19). The independent vari-
—INQes(X) —[—In/oP(x)], falls off rather quickly as ablexe[0,1] is discretized in equal steps (1for Figs. 1-4,
~1/J/NP(x). It was also noted that the effective action and 16 for Figs. 5 and & We use an equally spaced grid to
[Eg. (7)] has acquired a termrIn R, which grows as” de-  ensure stability of the method, while small step sizes are
crﬁases. This is contrary to the data contributionneeded since the scale for variationgfi(x) is [5]
3L 1da(X;), which favors small” and the corresponding
O\J/erfitting]. Thus the-InR term may be rightfully called an X~/ INP(x), ®
infinite-dimensional generalization of the Occam factors.
The authors speculated that, if the actdals unknown, one
may average over it and hope that, much as in Bayesiaa
model selectiori1,2], the competition between the data and om p 7 ; . .
the fluctuations will select the optimal smoothness seie replacinge¢ with its Fourier series and truncating the latter at

. : . . ome sufficiently high wave numbé&g (k.= 1000 for Figs.
Z;”ﬁﬂ{ tNhEEy suggested that this optimal scale might behav —4, and 5000 for Figs. 5 and.6r'hen Eq.(3) enforces the

eamplitude of thekth mode k>0) to be distributedx priori
ormally around zero with the standard deviation

which can be rather small for lardé or small /.
Since the theory is UV convergent, we can generate ran-
m probability densities chosen from the prior Eg). by

Before we proceed to the numerical implementation of th
above algorithm, a note is in order. At first glance the theor)p

we study seems to look almost exactly similar to a Gaussian o112 L \7
procesd6]. This impression is produced by a Gaussian form Uk=—<_) ) (9)
of the smoothness penalty in E@), and by the fluctuation /=12 27k
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FIG. 4. A as a function ofN, 7., and/,. Best fits: for 5,
=2, /,=0.1, A=(0.40+0.05)N"049%0013 for 5 =0.8, /,
=0.1, A=(1.06+ 0.08)N 03550008 /= 2 for all graphs, but the
one with »,=0, for which/=0.1.

FIG. 2. A as a function ofN and /. The best fits are: for’
=0.4, A=(0.54+0.07)N"04830014 {5 =02, A=(0.83
+0.08)N~0493=0.0% fqr /=0.05, A = (1.64+0.16)N~-50%=0.09

Once all these amplitudes are selected,kk® harmonic is
then set by the normalization condition. the Kullback-LeiblerKL) divergenceD«, (P||Qes) between
Coded in such a way, the simulations are extremely comthe true distributionP(x) and its estimat®.(x), and then
putationally intensive because each iteration steps involvegverage over the realizations of the data points and the true
an inversion of a large matrix. Therefore, Monte Carlo aver-jstribution. As discussed if8], this learning curveA (N)
agings given here are only over 500 runs, fluctuation determeasures thé¢averagg excess cost incurred in coding the
minants are calculated according to K@), not using nu-  N+1th data point because of the finiteness of the data
merical path integration, andQq=(1//o)exd—¢u]l is  sample, and thus can be called the “universal learning
always used as an approximation@Qs;. curve.” If the inference algorithm uses all of the information
contained in the data that is relevant for learnitredictive
IV. SIMULATIONS: CORRECT PRIOR information” [3]), then[3,5,10,11
As an example of the algorithm’s performance, Fig. 1
shows one particular learning run fgr=1 and/'=0.2. We
see that singularities and overfitting are absent eveilfas
low as ten. Moreover, the approach @f(x) to the actual
distribution P(x) is remarkably fast: foN=10, they are
similar; for N=1000, very close; foN=100 000, one needs
to look carefully to see the difference between the two.
To quantify this similarity of distributions, we compute

A(N)~(L//)Y2NY2n—1, (10)

We test this prediction against the learning curves in the
actual simulations. Fop=1 and/ =0.4,0.2,0.05, these are
shown in Fig. 2. One sees that the exponents are extremely
close to the expected one-half, and the ratios of the prefac-
tors are within the errors from the predicted scalin@/\/ .

All of this means that the proposed algorithm for finding
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FIG. 3. A as a function ofN and /,. Best fits are: for/,
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FIG. 5. Smoothness scale selection by the data. The lines that go
off the axis for smalN symbolize thaS,; monotonically decreases
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10° : : no overfitting On the other hand\ is well above the asymp-
tote for »=2 and smallN, which means that initially too
many details are expected and wrongfully introduced into the
estimate, but then they are almost immediatay/~<300)
eliminated by the data.

VI. SMOOTHNESS SCALE SELECTION

Following the argument suggested [i6], we now view

o 1,08, =01, EF oo ] Pl &1, Eq. (3), as being a part of some wider model that
107l —— n,;=0.8, 1=0.1, 0.2 o] involves a prior over/. The details of the prior are irrel-
ce-M=2 [=01, = F evant, however, ifSx(/), Eq. (7), has a minimum that

_a.M=2 [=01, =02 steepens all grows. We explicitly note that this mechanism

107 = v . is not a tuning of the prior's parameters, but Bayesian infer-

10 M 10 ence at workz* emerges in a competition between the ki-

FIG. 6. Comparison of learning speed for the same data set@etic’ the data, and the”Occam terms.to msg@smaller,
with differenta priori assumptions. and thus theotal probability of the data is larger. In its turn,

larger probability means, roughly speaking, a shorter total

densities not only works, but is at most a constant factofode length, hence, the relation to the MDL paradigth

away from being optimal in using the predictive information  The data term, on average, is equaltdy (P||Qq), and,
of the sample set. for very regularP(x) (an implicit assumption irf5)), it is

small. Thus only the kinetic and the Occam terms matter, and
/* ~NY3[5]. For less regular distributior8(x), this is not
true[cf. Fig. (4)]. For =1, Q(x) approximates large-scale
Next we investigate how one’s choice of the prior influ- features ofP(x) very well, but details at scales smaller than
ences learning. We first stress that there is no such thing as-a\///NL are averaged out. P(x) is taken from the prior,
wrong prior. If one admits a possibility of it being wrong, Eq. (3), with some,, then these details fall off with the
then it does not encode all of tlaepriori knowledge. It does wave numberk as ~k~7a. Thus the data term is
make sense, however, to ask what happens if the distribution N5~ 7a,7a~05 and is not necessarily small. Far,<1.5
we are trying to learn is an extreme outlier in the pfkb].  this dominates the kinetic term and competes with the fluc-
One way to generate such an example is to choose a typicalations to set
function from a different prior?'[ ¢], and this is what we
mean by “learning with a wrong prior.” /*~Na=Dima <15, (11
If the prior is wrong in this sense, and learning is de-
scribed by Eqgs(2)—(4), then we still expect the asymptotic There are two remarkable things about Etfl). First, for
behavior, Eq(10), to hold; only the prefactors of should 7,=1, /* stabilizes at some constant value, which we ex-
change, and those must increase since there is an obviopect to be equal te”,. Second, even fon+# 5., Egs.(10)
advantage in having the right prior; we illustrate this in Figs.and (11) ensure thatA scales as~NY27a~1 which is at
3 and 4. worst a constant factor away from the best scaling, (EQ),
For Fig. 3, bothP'[ ¢] andP[ ¢] are given by Eq(3), but  achievable with the “right” prior,7=7,. So, by allowing
P’ has the “actual” smoothness scafg=0.4,0.05, and for /* to vary with N we can correctly capture the structure of
P the “learning” smoothness scale i$=0.2 (we show the models that are qualitatively different from our expectations
case/ ,=/=0.2 again as a referenc@he A ~1/\/N behav-  (n# 7,) and produce estimates &f that are extremely ro-
ior is seen unmistakably. The prefactors are a bit lafger  bust to the choice of the prior. To our knowledge, this feature
fortunately, insignificantlythan the corresponding ones from has not been noted before in a reference to a nonparametric
Fig. 2, so we may expect that the “right”, indeed, provides problem.
better learningsee later for a detailed discussjon We present simulations relevant to these predictions in
Further, Fig. 4 illustrates learning when not orlybut  Figs. 5 and 6. Unlike in the previous figures, the results are
also » is “wrong” in the sense defined above. We illustrate not averaged due to extreme computational costs, so all our
this for »,=2,0.8, 0.6, 0(remember that only;,>0.5 re-  further claims have to be taken cautiously. On the other hand,
moves UV divergencgsAgain, the inverse square root de- selecting/* in single runs has some practical advantages,
cay of A should be observed, and this is evident igr=2.  we are able to ensure the best possible learning for any real-
The ,=0.8,0.6,0 cases are different. Even fms high as ization of the data. Figure 5 shows single learning runs for
10° the estimate of the distribution is far from the target, thusvarious », and/,. In addition, to keep the figure readable,
the asymptotic regime is not reached. This is a crucial obsewe do not show runs withy,=0.6,0.7,1.2,1.5,3, andj,
vation for our subsequent analysis of the smoothness scale «, which is a finitely parameterizable distribution. All of
determination from the data. Remarkably,(both averaged these display a good agreement with the predicted scalings,
and in the single runs showis monotonic, so even in the Egq. (11) for 7,<1.5, and/* ~N'? otherwise. Next we cal-
cases ofgualitatively less smooth distributionthere still is  culate the KL divergence between the target and the estimate

V. SIMULATIONS: WRONG PRIOR

026137-4



OCCAM FACTORS AND MODEL INDEPENDEN . . . PHYSICAL REVIEW E 65 026137

at/=/*. The average of this divergence over the sample§wo models provide equally good fits to datasimpler one
and the prior is the learning curef. Eq. (10)]. For ,  should always be useth particular, the predictive informa-
=0.8,2 we plot the divergences in Fig. 6 side by side withtion, which quantifies complexit}3], and of whichA is the
their fixed /=0.2 analogues. Again, the predictions clearly derivative, in a QFT model is-N*27, and it is ~kcInN in
are fulfilled. Note, that forp,# 7 there is aqualitativead-  the parametric case. So, flag>N"27, one should prefer a

vantage in using the data induced smoothness scale. “wrong” QFT formulation to the correct one. These results
are very much in the spirit of our whole program. Not only is
VIl. PARAMETRIZATION AS A WRONG PRIOR the value of/* selected that simplifies the description of the

data, but the continuous parameterization itself serves the
The last four figures have illustrated some aspects oame purpose.
learning with “wrong” priors. However, all of our results
may be considered as belonging to the “wrong prior” class. VIll. SUMMARY
Indeed, the actual probability distributions we used were not . . . L
nonparametric continuous functions with smoothness con- The field theoretic approach to density estimation not only

straints, but were composed kf{ Fourier modes, thus had regul_a?zets th? Iﬁarmngf proceiﬁ but als_(: 6.‘”0\’;?? thehself-
2k, parameters. For finite parameterization, asymptotic prop.(—:?l.ns.is Zr.] selec |<?n or sm??h nc(e)ss cr fe ”? r\(,)\;]gh an
erties of learning usually do not depend on the pri@fs Infinite-dimensional version of the ccam tactors. Ve have

[3.4]), and priorless theories can be consideiidl. In such shown numerically, and then explained analytically that this

theories it would take well overk samples to even start to v<volrk53, Aetveln t;nore clearly thart1 Wfatsh C(c)jnjtecturzd. 't:”a; th
close down on the actual value of the parameters, and yetf -2, A lruly becomes a property of the data, and not ot the

lot more to get accurate results. However, using the wron ayis_|ant;r)]_r|or. If\live g:tﬁntr(]extend thesetr_estl_lts to oﬂm_ ntdf
continuous parameterizatigrb(x)] we were able to obtain omoine this work wi € reparametrization invariant for-

good fits for as low as 1000 sampkes. Fig. 1) with the help mulation of [8,9], this should give a complete theory of
of the prior Eq.(3). Moreover, learning happened continu- Bayesian learning for one dimensional distributions, and this

ously and monotonically without huge chaotic jumps Oftheory has no arbitrary parameters. In addition, if this theory

overfitting that necessarily accompany any brute force paErOpiL'y treﬁtstt? gn;'t”f‘_}dw we_sholulg be at;le tto see d
rameter estimation method at loM. So, for some cases, a ow the well-studied Tinite-dimensional Uccam factors an

seemingly more complex modslactuallyeasierto learn. the MDL principle arise from a more general nonparametric

Thus our claim: when data are scarce and the paramete@rmUIat'on'
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